Current Issue : October-December Volume : 2021 Issue Number : 4 Articles : 5 Articles
Allosteric modulators have emerged with many potential pharmacological advantages as they do not compete the binding of agonist or antagonist to the orthosteric sites but ultimately affect downstream signaling. To identify allosteric modulators targeting an extra-helical binding site of the glucagon-like peptide-1 receptor (GLP-1R) within the membrane environment, the following two computational approaches were applied: structure-based virtual screening with consideration of lipid contacts and ligand-based virtual screening with the maintenance of specific allosteric pocket residue interactions. Verified by radiolabeled ligand binding and cAMP accumulation experiments, two negative allosteric modulators and seven positive allosteric modulators were discovered using structure-based and ligand-based virtual screening methods, respectively. The computational approach presented here could possibly be used to discover allosteric modulators of other G proteincoupled receptors....
The emergence of multidrug-resistant Mycobacterium tuberculosis (MTB) has become a major problem in treating tuberculosis (TB) and shows the need to develop new and efficient drugs for better TB control. This study aimed to use in silico techniques to discover potential inhibitors to the Enoyl-[acyl-carrier-protein] reductase (InhA), which controls mycobacterial cell wall construction. Initially, 391 quercetin analogs present in the KNApSAck_3D database were selected, filters were sequentially applied by docking-based virtual screening. After recategorizing the variables (bond energy prediction and molecular interaction, including hydrogen bond and hydrophobic bond), compounds C00013874, C00006532, and C00013887 were selected as hit ligands. These compounds showed great hydrophobic contributions, and for each hit ligand, 100 ns of molecular dynamic simulations were performed, and the binding free energy was calculated. C00013874 demonstrated the greatest capacity for the InhA enzyme inhibition with DGbind = 148.651 kcal/mol compare to NAD (native ligand) presented a DGbind = 87.570 kcal/mol. These data are preliminary studies and might be a suitable candidate for further experimental analysis....
SARS-CoV-2 (COVID-19), a novel coronavirus causing life-threatening pneumonia, caused a pandemic starting in 2019 and caused unprecedented economic and health crises all over the globe. This requires the rapid discovery of anti-SARS-CoV-2 drug candidates to overcome this life-threatening pandemic. Strawberry (Fragaria ananassa Duch.) and ginger (Zingiber officinale) methanolic extracts were used for silver nanoparticle (AgNPs) synthesis to explore their SARS-CoV-2 inhibitory potential. Moreover, an in silico study was performed to explore the possible chemical compounds that might be responsible for the anti-SARS-CoV-2 potential. The characterization of the green synthesized AgNPs was carried out with transmission electron microscope (TEM), Fouriertransform infrared, spectroscopy ultraviolet-visible spectroscopy, zeta potential, and a dynamic light-scattering technique. The metabolic profiling of strawberry and ginger methanolic extract was assessed using liquid chromatography coupled with high-resolution mass spectrometry. The antiviral potential against SARS-CoV-2 was evaluated using an MTT assay. Moreover, in silico modeling and the molecular dynamic study were conducted via AutoDock Vina to demonstrate the potential of the dereplicated compounds to bind to some of the SARS-CoV-2 proteins. The TEM analysis of strawberry and ginger AgNPs showed spherical nanoparticles with mean sizes of 5.89 nm and 5.77 nm for strawberry and ginger, respectively. The UV-Visible spectrophotometric analysis showed an absorption peak at max of 400 nm for strawberry AgNPs and 405 nm for ginger AgNPs. The Zeta potential values of the AgNPs of the methanolic extract of strawberry was 39.4 mV, while for AgNPs of ginger methanolic extract it was 42.6 mV, which indicates a high stability of the biosynthesized nanoparticles. The strawberry methanolic extract and the green synthesized AgNPs of ginger showed the highest antiviral activity against SARS-CoV-2. Dereplication of the secondary metabolites from the crude methanolic extracts of strawberry and ginger resulted in the annotation of different classes...................
Kunitz-like trypsin inhibitors are one of the most noteworthy research objects owing to their significance in pharmacological studies, including anticarcinogenic activity, obesity regulation and anticoagulation. In the current study, a novel Kunitz-like trypsin inhibitor, Kunitzin-AH, was isolated from the skin secretion of Amolops hainanensis. The novel peptide displayed a modest trypsin inhibitory activity with the inhibitor constant (Ki) value of 1.18 0.08 M without inducing damage to healthy horse erythrocytes. Then, a series of shortened variants of Kunitzin-AH were designed by truncating a peptide loop and site mutation inside the loop to illustrate the structure–activity relationship of the trypsin inhibition function. Among the variants, a significant decrease was observed for the Cys-Cys loop domain, while the extension of an Arg at N-terminus (RCKAAFC) retained the inhibitory activity, indicating that the -RCK-motif is essential in forming the reactive domain for exerting the inhibitory activity. Furthermore, substitutions of Ala by hydrophobic or hydrophilic residues decreased the activity, indicating suitable steric hindrance provides convenience for the combination of trypsin. Additionally, the conformational simulation of the analogues processed with Chimera and Gromacs and further combination simulations between the peptides and trypsin conducted with HDOCK offered a potential opportunity for the natural trypsin inhibitory drug design. The truncated sequence, AH-798, may be a good replacement for the full-length peptide, and can be optimized via cyclization for further study....
Six amino derivatives of grossgemin (2–7) were synthesized according to the reported essential pharmacophoric features of colchicine binding site inhibitors (CBSIs). /e derivatives 4–6 were obtained for the first time. /e pharmacophoric features of 2–7 as CBSIs were studied to be almost identical. Furthermore, the 3D-flexible alignment of compound 5 as a representative example with colchicine showed a very good overlapping. In agreement, compounds 2–7 docked into CBS with binding modes very similar to that of colchicine and exhibited binding free energies of −24.57, −25.05, −32.16, −29.34, −26.38, and −26.86 (kcal/ mol), respectively. /e binding free energies of 4–7 were better than that of colchicine (−26.13 kcal/mol) with a noticeable superiority to compound 4....
Loading....